ON THE CHROMATOGRAPHY OF RECIPROCAL SALT SYSTEMS*

JOHN E. GORDDON
Woods Hole Oceanographic Institution, Woods Hole, Mass. (U.S.A.)
(Received June 28th, 1965)

Chromatography of a reciprocal salt system composed of monovalent cations C^{1} and C^{2}, and anions A^{1} and A^{2}, can produce up to four bands or spots. It is not immediately apparent without a detailed analysis of the problem, however, how many bands will be observed and what will be their relative intensities. Four spots have been reported in paper chromatography ${ }^{1}$ and in thin-layer chromatography on silica gel G^{2}, the inner spots being less intense than the extreme spots in the latter case.

This report describes the results of application of distribution theory to this and a related system, and comparison of the theoretical predictions with available experimental results.

METHOD
The pertinent equilibrium expressions are

$$
\begin{align*}
& \mathrm{C}^{1} \mathrm{~A}^{1}+\mathrm{C}^{2} \mathrm{~A}^{2} \stackrel{K^{M}}{\rightleftharpoons} \mathrm{C}^{1} \mathrm{~A}^{2}+\mathrm{C}^{2} \mathrm{~A}^{1} \quad K^{M}=\frac{\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{M}\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{M}}{\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{M}\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{M}} \tag{I}\\
& \left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{F}=K_{D^{11}}\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{M} \tag{2}\\
& \left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{F}=K_{D^{12}}\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{M} \tag{3}\\
& \left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{W}=K_{D^{21}}\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{M} \tag{4}\\
& \left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{F}=K_{D^{22}}\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{M} \tag{5}\\
& \left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{F}+\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{M}+\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{F}+\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{M}=T^{11}+T^{12} \tag{6}\\
& \left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{F}+\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{M}+\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{F}+\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{M}=T^{12}+T^{22} \tag{7}\\
& \left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{F}+\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{M}+\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{F}+\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{M}=T^{21}+T^{22} \tag{8}\\
& \left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{F}+\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{M}+\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{F}+\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{M}=T^{11}+T^{21} \tag{9}
\end{align*}
$$

where ($)^{F}$ and ($)^{M}$ denote concentrations in the fixed and mobile phases and $T^{i j}$ represents the total concentration of $\mathrm{C}^{1} \mathrm{~A}^{y}$ charged into a given plate before equilibration. Simultaneous solution of (5)-(5) and any three of (6)-(9) affords straightforward though involved analytical expressions for the eight variables ($\left.\mathrm{C}^{t} \mathrm{~A}^{j}\right)^{F}$ and $\left(\mathrm{C}^{t} \mathrm{~A}^{j}\right)^{M}$.

[^0]Plate theory computations for this system were carried out using a General Electric 225 computer. The first cells of banks of equal volume cells of the two phases were opposed, one mole each of $\mathrm{C}^{1} \mathrm{~A}^{1}$ and $\mathrm{C}^{2} \mathrm{~A}^{2}$ or $\mathrm{C}^{1} \mathrm{~A}^{2}$ and $\mathrm{C}^{2} \mathrm{~A}^{1}$ was charged into the first cell of the fixed phase, the equilibrium values of $\left(\mathrm{C}^{i} \mathrm{~A}^{j}\right)^{F}$ and $\left(\mathrm{C}^{1} \mathrm{~A}^{j}\right)^{M}$ were computed, the mobile bank of cells was advanced to the next plate, new $T^{t j}$ and then new ($\mathrm{C}^{i} \mathrm{~A}^{j}$) were computed for each cell and so on until the requisite number of plates had been equilibrated.

This model corresponds to a partition chromatogram in which the rate of attainment of equilibrium is large relative to the rate of flow of the mobile phase. The above formulation of the distribution equilibria assumes that ion pairs are the only important species in both phases.

The computation routine described, when applied to pure, noninteracting components, produced highly symmetrical peaks in 50 -plate chromatograms. The reciprocal salt system results obtained invariably satisfied the symmetry and mass balance requirements of the system $\left(\Sigma\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)=\Sigma\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right), \Sigma\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)=\Sigma\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)\right.$, $\Sigma\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)+\Sigma\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)=\mathrm{I}$, the summation, here and elsewhere in this paper, extending over all plates of the chromatogram) and the output peak maxima appeared at the R_{F} values required by the values of $K_{D}{ }^{i J}$ read into each run.

RESULTS

The results for 23 runs are given in Table I. Fig. I illustrates the course of development of a typical chromatogram. Fortunately, a 200 -plate computation (the practical limit in the present work) is sufficient to resolve completely the left and right halves of the chromatogram, though not the individual components of

Fig. 1 . Partition chromatogram of the system $C^{1} A^{1}+C^{2} A^{2}=C^{1} A^{2}+C^{2} A^{1}$, with $R_{F}{ }^{11}=0.2727$, $R_{F^{12}}=0.4286, R_{F^{21}}=0.6000, R_{F^{20}}^{20}=0.7500$ and $K^{M}=K^{F}=1$. After (A) 50; (B) 100; (C) 200 plates (runs 8, IO, I I of Table I). F marks the solvent front.
J. Chromatog., 21 (1966) 75-84
TABLE I

Retn	N^{*}	K^{M}	$R_{F}{ }^{11}$	$R_{F}{ }^{12}$	$R_{F}{ }^{21}$	$R_{F}{ }^{22}$	$\frac{K^{12} K^{21}}{K^{11} K^{22}}$	$\frac{R_{F}^{21}-}{R_{F}^{22}-}$	$\left(X^{12}+X^{21}\right) c o r$	$X^{12}+X^{21}$
1	50	I	0.2500	0.2625	0.7375	0.7500	1.000	0.950	0.4778	0.4779
2	50	1	0.2500	0.2750	0.7250	0.7500	1.000	0.900	0.4552	0.4554
3	50	1	0.2500	0.3000	0.7000	0.7500	1.000	0.800	0.4082	0.4085
4	50	1	0.2500	0.3500	0.6500	0.7500	1.000	0.600	0.3073	0.3084
5	50	I	0.2500	0.4500	0.7500	0.7500	0.407	0.600	0.2762	0.2777
6	50	1	0.2500	0.3845	0.6000	0.7500	1.068	0.43 I	0.2193	0.2226
7	25	I	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.1812	0.2275
8	50	I	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.1802	0.1876
9	75	1	0.2727	0.4286	0.6000	s 0.7500	1.000	0.359	0.1774	0.1787
10	100	1	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.1756	0.1759
II	200	1	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.1738	0.1738
12	50	I	0.4286	0.6000	0.7500	0.3571	1.000	0.350	0.1815	0.1921
13	50	1	0.2727	0.4286	0.6000	0.8333	1.667	0.306	0.1564	0.1595
14	50	I	0.2727	0.4545	0.5555	0.7500	1.079	0.212	0.1053	0.1221
15	50	I	0.2500	0.4545	0.5555	0.8000	1.278	0.184	0.0867	0.0944
16	100	I	0.2500	0.4545	0.5555	0.8000	1.278	0.184	0.0785	0.0789
17	50	I	0.2500	0.7143	0.7692	0.8333	0.200	0.094	0.0361	0.0483
18	50	I	0.2727	0.5000	0.5000	0.7500	1.122	0.000	0.0000	0.0737
19	100	I	0.2727	0.5000	0.5000	0.7500	1.122	0.000	0.0000	0.0251
20	50	I	0.2500	0.2500	0.7500	0.7500	1.000	1.000	1.0000	1.0000
21	50	2	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.2376	0.2517
22	50	5	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.3255	0.3574
23	50	50	0.2727	0.4286	0.6000	0.7500	1.000	0.359	0.5503	0.660I

[^1]each wing. Such four-peal chromatograms are produced in each case where the four salts possess different K_{D} values. Fig. IC bears a close resemblance to the thin-layer chromatograms previously observed ${ }^{2}$.

Table I reveals that the intensity distribution between outer and inner peaks, measured conveniently by $X^{12}+X^{21}=\left[\Sigma\left(C^{1} A^{2}\right)+\Sigma\left(C^{2} A^{1}\right)\right] / 2$, is a function of the set of K_{D} values of the four salts. In working out this dependence (and that on K^{M}) it was necessary for the sake of economy to work principally with 50 -plate runs. Fig. 2 A shows that complete resolution about the center of symmetry of the chromatograin is achieved at about 200 plates, and that $X^{12}+X^{21}$ does not become constant

Fig. 2. Characteristics of the chromatograms of Fig. I. $X^{12}+X^{21}(A) v s$. number of plates; (B) vs. a function of the cross-hatched area of Fig. 4.

Fig. 3. Partition chromatogram of the system $\mathrm{CA}^{1}{ }_{2}+\mathrm{CA}^{2}=\mathrm{CA}^{1} \mathrm{~A}^{2}$, with $R_{r^{\prime}}{ }^{11}=0.25, R_{r^{\prime}}{ }^{12}=$ $0.50, R_{r^{2}}{ }^{22}=0.75$ after (A) 50, (B) y 00 plates.
until this point is reached. (Redistribution of material within the right and left halves of the chromatogram according to eqn. (I) can take place only through a region of overlap betrecen the right and left halves.) Fig. 2 B uses a convenient extrapolation function to show that $X^{12}+X^{21}$ for the 200 -plate chromatogram differs negligibly from that for complete resolution; the form of Fig. IC is thus quantitatively correct. The 50plate chromatograms were corrected approximately for the incomplete resolution by attributing the overlap area R (see Fig. 4A where the composition of a 50-plate peals is illustrated and R is shown as the cross hatched area) to the outer maxima, i.e. ($X^{12}+$ $\left.X^{21}\right)$ cor. $=0.5 \Sigma\left|\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{M}+\left(\mathrm{C}^{1} \mathrm{~A}^{8}\right)^{F}-\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{M}-\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{F}\right|$. This gave $X^{12}+X^{21}$ within about 3% of the 200 -plate value and this was considered acceptable. Material redistribution in the developing band substantially reduces the rate of resolution in these chromatograms in comparison with the separation of noninteracting substrates with the same R_{F} difference, as is shown in Fig. 4 B .
$X^{12}+X^{21}$ proves to be, to a close approximation, proportional to the quantity $\left(R_{F^{21}}-R_{F^{12}}\right) /\left(R_{F^{22}}-R_{F^{11}}\right)$ as illustrated in Fig. 5*. There is a further minor de-

[^2]

Fig. 4. Characteristics of chromatograms of the type of Fig. I. (A) Brealzdown of inclividual components for run 8 of Table I:,$C^{1} A^{1}$ and $C^{2} A^{2} ;--, C^{1} A^{2}$ and $C^{2} A^{1} ; —$, total. (B) Comparison of run 18 (solid circles) with a chromatogram computed for two purc, noninteracting substances (open circles) having \boldsymbol{R}_{F} values equal to those of $\mathrm{Cl}^{1} \mathrm{~A}^{1}$ and $\mathrm{C}^{2} \mathrm{~A}^{2}$ in run I 8 . (Note that run 8 is the situation in which the reciprocal system eventually resolves into only two pealrs).
pendence on the symmetry of the $K_{D}{ }^{6 j}$ values about unity, with $K_{D^{12}} K_{D^{21}} / K_{D}{ }^{11} K_{D^{22}}$ $>$ I producing positive deviations in $X^{12}+X^{21}$ and vice versa. This is considered in a later section. In any case the principal intensity distribution is given by

$$
\begin{equation*}
X^{12}+X_{i}^{21}=0.50\left(R_{F^{21}}-R_{F^{12}}\right) /\left(R_{F^{22}}^{22}-R_{F^{11}}\right) \tag{10}
\end{equation*}
$$

with an average deviation of 0.014 in $X^{12}+X^{21}$. Thus the chromatogram collapses to two spots only in the limit of $K_{D^{12}}=K_{D^{21}}$, and it approaches four spots of equal intensity only in the limit $K_{D^{12}} \longrightarrow K_{D^{11},} K_{D^{21}} \longrightarrow K_{D^{22}}$. The point at $R_{F^{11}} \equiv R_{F^{12}}$, $R_{F^{21}} \equiv R_{F^{22}}$ is idiosyncratic, computation predicting (run 20) two peaks of pure $\mathrm{C}^{1} \mathrm{~A}^{2}$ and $\mathrm{C}^{2} \mathrm{~A}^{1}$, i.e. $X^{12}+X^{21}=I$ rather than 0.5 as predicted by eqn. (Io). The value $X^{12}+X^{21}=0$ at $R_{F^{12}}=R_{F^{21}}$ was difficult to demonstrate directly with precision. Since this point represents the minimum rate of resolution (Fig. 4B) a roo-plate run still shows an appreciable $X^{12}+X^{21}$ value (Table I). However, extra-

Fig. 5. Plot of $X^{12}+X^{21}$ vs. $\left(R_{F^{21}}^{21}-R_{F^{12}}\right) /\left(R_{F^{22}}-R_{F^{11}}\right)$ according to eqn. (Io).
polation of the $50-$ and roo-plate results, the general form of the $X^{12}+X^{21} v s$. $\left(R_{F}{ }^{21}-R_{F}{ }^{12}\right) /\left(R_{F^{22}}-R_{F}{ }^{11}\right)$ dependence, and the analogy with the $\mathrm{CA}^{1}{ }_{2}-\mathrm{CA}^{2}{ }_{2}-\mathrm{CA}^{1} \mathrm{~A}^{2}$ system discussed in the next section together leave little doubt regarding this point.

The system $C A^{1}{ }_{2}-C A^{2}{ }_{2}-C A^{1} A^{2}$
It is instructive to consider next the system of a bivalent cation with two monovalent anions for which eqn. (II) together with five equations analogous to (2)-(9) have been employed

$$
\begin{equation*}
\mathrm{CA}_{2}+\mathrm{CA}^{2} 2 \rightleftharpoons 2 \mathrm{CA}^{1} \mathrm{~A}^{2} \tag{II}
\end{equation*}
$$

in computations analogous to those of Table I. As Fig. 3 and Table II illustrate, this system does not give three spots, but only those due to $\mathrm{CA}^{1}{ }_{2}$ and CA^{2}. Clearly this occurs, just as in the case of $\mathrm{C}^{1} \mathrm{~A}^{1}-\mathrm{C}^{1} \mathrm{~A}^{2}-\mathrm{C}^{2} \mathrm{~A}^{1}-\mathrm{C}^{2} \mathrm{~A}^{2}$ with $K_{D^{12}}=K_{D^{21}}$, because the two central ion pairs ($2 \mathrm{CA}^{1} \mathrm{~A}^{2}$ or $\mathrm{C}^{1} \mathrm{~A}^{2}+\mathrm{C}^{2} \mathrm{~A}^{1}$) remain physically superposed and are thus progressively converted via eqn. (I) or eqn. (II) to $\mathrm{CA}^{1}{ }_{2}+\mathrm{CA}^{2}$ or $\mathrm{Cl}^{1} \mathrm{~A}^{1}+\mathrm{C}^{2} \mathrm{~A}^{2}$. With the rest of the systems of Table I on the other hand, $\mathrm{C}^{1} \mathrm{~A}^{2}$ and $\mathrm{C}^{2} \mathrm{~A}^{1}$, having different R_{F} values, disengage physically before they are wholly consumed.

TA.BLE II
CHROMATOGRAMS OF THE SYSTEM $\mathrm{CA}_{2}^{1}-\mathrm{CA}^{2}{ }_{2}-\mathrm{CA}^{1} \mathrm{~A}^{2}$ COMPUTED ACCORDING TO DISTRIBUTION THEORY

N^{*}	N^{M}	$R_{F}{ }^{11}$	$R_{F^{12}}$	$R_{F}{ }^{22}$	$X^{12 * *}$
50	I	0.25	0.50	0.75	0.0176
100	I	0.25	0.50	0.75	0.0074

${ }^{*}{ }^{*} N=$ number of plates.
${ }^{* *} X^{12}=$ mole fraction of $\mathrm{CA}^{1} \mathrm{~A}^{2}$.

The quotient $K_{D^{12}} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D}{ }^{22}$
If one writes the analog of eqn. (I) for the fixed phase

$$
\begin{equation*}
K^{F}=\frac{\left(\mathrm{C}^{1} \mathrm{~A}^{2}\right)^{F}\left(\mathrm{C}^{2} \mathrm{~A}^{1}\right)^{F}}{\left(\mathrm{C}^{1} \mathrm{~A}^{1}\right)^{F}\left(\mathrm{C}^{2} \mathrm{~A}^{2}\right)^{F}} \tag{1:2}
\end{equation*}
$$

it is clear that the partition equilibrium

is overdetermined and that

$$
\begin{equation*}
\frac{K^{F}}{K^{M}}=\frac{K_{D}^{12} K_{D^{21}}}{K_{D^{11}}^{11} K_{D^{22}}} \tag{тз}
\end{equation*}
$$

J. Chromatog., 21 (1966) 75-84

The situation $K_{D^{12}} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D}{ }^{22}=1$ occupies a special position as the only case where K^{F} and K^{M} can both the unity, as would occur in the absence of ion association. This is the case corresponding to additivity of ionic contributions to the free energy of transport of $\mathrm{C}^{i} \mathrm{~A}^{j}$ from one phase to the other ${ }^{3}$.

This is why eqn. (IO) is strictly valid only for $K_{D^{12}} K_{D^{21}} / K_{D^{11}} K_{D^{22}}=K^{F}=$ $K^{M}=I$, since otherwise, eqn. (I) and eqn. (I2) will in general bias the material distribution of the chromatogram somewhat. If the residual error due to incomplete resolution is kept in mind, this bias is in the right direction to qualitatively account for the deviations in Fig. 5; quantitative corrections would be difficult to compute.

In most chromatographic systems ion association will be present, and $K_{D^{12}} K_{D}{ }^{21} / K_{D^{11}} K_{D^{22}}$ values different from unity are expected. Data for thin-layer chromatography of quaternary ammonium iodides, bromides, nitrates and perchlorates 2 on silica gel G in chloroform-ethanol (24:I) provide 31 reciprocal salt systems for which the distribution of $K_{D}{ }^{12} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D^{22}}$ values is given in Table III.

TABLE III
DISTRIBUTION OF EXPERIMENTAL $K_{D}{ }^{12} K_{D} D^{21} / K_{D} D^{11} K_{D} D^{22}$ VALUES

$K_{D}{ }^{1 \Sigma} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D^{22}}{ }^{*}$	Number of cases**
0.90- 3.94	4
0.95-3.99	5
1.00-1.04	7
1.05-1.09	7
I.IO-I. ${ }_{4}$	3
1.15-I.20	5

[^3]It is of interest to attempt to account for the values of $K_{D^{12}} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D^{22}}$ for these reasonably simple, near-spherical ions on the basis of simple electrostatic considerations. For a reciprocal ion pair equilibrium of the type

$$
\begin{equation*}
C^{\text {large }} A^{\text {large }}+C^{\text {smal1 }} A^{\text {small }} \stackrel{K}{\rightleftharpoons} C^{\text {large }} A^{\text {small }}+C^{\text {small }} A^{\text {large }} \tag{14}
\end{equation*}
$$

where the superscripts refer to the ionic radii, it is possible to demonstrate, assuming only that the distances of closest approach are sums of constant ionic contributions, that the electrostatic contribution to eqn. (I4) is such as to favor Clargealarge + Csmall $A^{\text {small }}$, i.e. make $K<I^{*}$. Increase in the dielectric constant of the medium will then reduce in magnitude the electrostatic energies and make K approach unity, i.e. increase K. If one makes the reasonable assumption that the fixed phase in these thin-layer chromatograms is the more polar phase, this requires that

$$
\frac{K^{F}}{K^{M}}=\frac{K_{D^{12}} K_{D^{21}}}{K_{D}^{11} K_{D^{22}}^{22}}>I
$$

[^4]when $\mathrm{C}^{1} \mathrm{~A}^{1}=$ Clarge $\mathrm{A}^{\text {large }}, \mathrm{C}^{1} \mathrm{~A}^{2}=$ Clarge $^{\text {asmall }}, \mathrm{C}^{2} \mathrm{~A}^{1}=\mathrm{C}^{\text {amall }} \mathrm{A}^{\text {large }}$ and $\mathrm{C}^{2} \mathrm{~A}^{2}=$ $C^{\text {amall }} A^{s m a l l}$. Thus, if the ion pairs are labelled (as throughout this paper) with $C^{1} A^{1}$ and $\mathrm{C}^{2} \mathrm{~A}^{2}$ the slowest and fastest species, respectively, the following should hold
$$
K_{D}{ }^{12} K_{D}{ }^{21} / K_{D}{ }^{11} K_{D}^{22}>\mathrm{I}
$$
if the slowest- and fastest-migrating ion pairs are Clarge $A^{\text {large }}$ and $C^{s m a l l} A^{s m a l l}$ and
$$
K_{D} 12 K_{D}^{21} / K_{D}^{11} K_{D}^{22}<1
$$
if the slowest and fastest ion pairs are Clarge $A^{s m a l l}$ and $C^{\text {small }}{ }^{\text {large }}$.
The test of this proposition is shown in Table IV.
In 24 of 29 cases (83%) the prediction is correct. Furthermore, four of the five contrary cases involve systems where the two quaternary ammonium cations differ by only one CH_{2} group in a $\mathbf{2 5}$-carbon atom ion, and the difference in R_{F} values is in fact not greater than their experimental uncertainties. The apparent success of this

TABLE IV
test of the electrostatic model for estimation of $K_{D}{ }^{12} K_{D} D^{21} / K_{D}{ }^{11} K_{D^{22}}$

	Number of cases*	
R_{F} extremes ave Clarge Alarge and CsmallAsmall **	R_{F} extremes ave ClargeAsmall and CsmallAlarge**	
$K>x$	18	2
$K<1$	3	6

[^5]simple model implies that the forces determining $K^{\boldsymbol{F}}$ and K^{M} are predominantly electrostatic and that the extrapolation of distribution phenomena to treat the thinlayer chromatograms (which are in large part adsorption chromatograms) is a usable one.

It is not surprising that (Tables III and IV) the cases of coincidence of ion pair radius sum-and chromatographic mobility-extremes outnumber the cases of noncoincidence nearly three fold (21:8). In every one of the coincident cases, moreover, Clarge $A^{\text {large }}$ is the fastest, Cemall ${ }^{\text {small }}$ the slowest species. Thus the fastest species are distributed among the types Clargealarge, Clarge ${ }^{\text {small }}$, Csmall $A^{\text {large }}$ and $C^{\text {amall }} A^{\text {small }}$ in the ratio $2 \mathrm{I}: 8: 0: 0$, reflecting the expected preference of the larger ions for the less polar phase 7, as well as a predominance of the influence of the cation.

The magnitude of K^{M}

Table I (runs 8,2 I-23) gives the variation in $X^{12}+X^{21}$ produced by variation of the input value of K^{M}. The generalizations of the preceding paragraph imply that the most common deviation from eqn. (10) will be that in which the extreme peaks are enriched at the expense of the inner peaks. Quite sizeable values of K^{M} can arise
J. Chromatog., 2 I (1966) 75-84
from. purely electrostatic contributions. For instance a system with ionic radii of I, I, 5 and $5 \AA$ (perhaps the most extreme case involving relatively simple ions) in a medium of dielectric constant $=$ Io generates $K^{M}=2 \cdot 10^{-7}$. On the other hand, the systems of Tables III and IV probably have $0.8 \leqslant K^{M} \leqslant$ I.o. It is interesting to note that values of K (eqn. 14) obtained by Grisword, Jones and Birdwhistelli from salt effects on salt solubilities in acetic acid can be accounted for rather well by the electrostatic model. For $\mathrm{Li}^{+}-\mathrm{MK}^{+}-\mathrm{Br}^{-}-$acetate ${ }^{-}$(or formate ${ }^{-}$) they report o.136 (0.178) vs. o.r3 calculated taking the effective radius of RCO_{2} - equal to that of hydroxide ion; similarly for $\mathrm{Na}^{+}-\mathrm{KK}^{+}-\mathrm{Br}^{-}-$acetate ${ }^{-}$(or formate ${ }^{-}$), 0.62 I (0.556) vs. 0.4^{2} calculated on the same basis.

With more complicated, perhaps polyfunctional ions, other forces can influence K^{M}, for example electron or proton donor-acceptor interaction. Representing acceptor and donor prop erties by the subscripts a and d, the system

$$
\mathrm{C}^{1}{ }_{a} \mathrm{~A}_{a}+\mathrm{C}^{2}{ }_{a} \mathrm{~A}^{2} a \stackrel{K^{M}}{ } \mathrm{C}^{1}{ }_{a} \mathrm{~A}_{a}+\mathrm{C}^{2}{ }_{a} \mathrm{~A}^{1}{ }_{d}
$$

could clearly have $K^{M} \simeq \mathrm{rO}^{-4}$ from this source alone.

SUMMARX

A theoretical plate treatment of the partition chromatography of a reciprocal salt system has been carried out with the aid of a high-speed digital computer, and the results have been compared with the available experimental information. The following points were established.
r. The system of univalent cations C^{1} and C^{2} and univalent anions A^{1} and A^{2} produces, in general, four bands whose relative magnitudes are a function of the R_{F} values of the four possible ion pairs. The distribution of material when $K_{D^{12}} K_{D}{ }^{21} /$ $K_{D^{11}} K_{D^{22}}=1$ is given to a good approximation by

$$
X^{12}=X^{21}=0.25\left(R_{F^{21}}-R_{F^{12}}\right) /\left(R_{F^{22}}^{22}-R_{F^{11}}\right)
$$

where $X^{11}, R_{F^{11}}$ and $K_{D^{11}}$ are the mole fraction, R_{F} value and partition coefficient of the slowest species $\mathrm{C}^{1} \mathrm{~A}^{1}$ etc.
2. The $\mathbf{2}$: 1 electrolyte system $\left.C^{++-(} A^{1}\right)^{--\left(A^{2}\right)^{-}}$produces no band corresponding to $\mathrm{CA}^{1} \mathrm{~A}^{2}$.
3. For simple ions in media in which the only important species are ion pairs, the magnitudes of the equilibrium constant K for $\mathrm{C}^{1} \mathrm{~A}^{1}+\mathrm{C}^{2} \mathrm{~A}^{2}=\mathrm{C}^{1} \mathrm{~A}^{2}+\mathrm{C}^{2} \mathrm{~A}^{1}$ can be estimated reliably from simple electrostatic considerations. The ratio of K values for the fixed and mobile phases of a partition chromatogram gives the important quotient $K_{D^{12}} K_{D^{21}} / K_{D}{ }^{11} K_{D^{22}}$ whose deviation from unity can be qualitatively predicted from a knowledge of the ionic radii and the relative polarity of the two phases.

REFERENCES

I J. Gasparič, in I. M. Hars and IK. Macek (Eclitors), Papey Chromatography, Academic Press, New York, I963, p. 4 I5.
2 J. E. Gordon, J. Chromatog., 20 (1965) 38.
3 H. L. Friedman and G. R. Havgen, J. Am. Chem. Soc., 76 (1954) 2060.

4 E. Grunwald, G. Baughman and G. IKohnstam, J. Am. Chem. Soc., 82 (ig6o) 58or.
5 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N.Y., 1960, p. 547.
6 S. V. Meschel and O. J. Kileppa, J. Phys. Chem., 68 (1964) 3840.
7 N. C. Deno and HI. E. Berkheimer, J. Org. Chem., 28 (1963) 2143.
8 E. Griswold, M. M. Jones and R. IK. Birdwhistell, J. Am. Chem. Soc., 75 (I953) 570 .
J. Chromatog., 2 I (1906) 75-84

[^0]: *Contribution No. 1677 from the Woods Hole Oceanographic Institution. Supported in part by the Office of Naval Research, Contract Nonr 2196 (oo).

[^1]: * $N=$ Number of plates.

[^2]: * Here and elsewhere in this article the ions are so labelled that $R_{F^{11}}<R_{F^{12}}<\boldsymbol{R}_{\boldsymbol{F}}{ }^{121}<R_{r^{22}}$; experimentally, of course, systems with $R_{F^{21}}^{21}<R_{F^{12}}$ are also observed ${ }^{2}$, but the form of the chromatogram is not changed by this inversion.

[^3]: ${ }^{*}$ Assigned such that $K_{D}{ }^{11}>K_{D}{ }^{12}>K_{D}{ }^{21}>K_{D}{ }^{22}$.
 ** Data from ref. 2.

[^4]: *This problem reduces to the following relations among the distances of closest approach : $a<b<c<d$ and $a+d=b+c$, from which it is readily shown that $(1 / a+1 / d)>(1 / b+1 / c)$. Since the electrostatic energy of the ion pair is proportional to x / a etc., this is a sufficient conclition for the above rule.

[^5]: * Of the 3 I systems, two had $K_{D}{ }^{12} K_{D^{\prime}}^{21} / K_{D}{ }^{11} K_{D}{ }^{22}=$ I.o.
 ** Ionic radii used (A) : $\mathrm{I}-, 2.16$; $\mathrm{ClO}_{4}^{-}, 2.00$; Br^{-}, I. 95 (Grunwald, Baughman and Kohnstam ${ }^{4}$) $\mathrm{NO}_{3}{ }^{-}$, I.75-I. 85 (Pauling ${ }^{6}$ and Meschel and Kleppa ${ }^{0}$).

